MicroRNA-382 induced by HIF-1α is an angiogenic miR targeting the tumor suppressor phosphatase and tensin homolog
نویسندگان
چکیده
Recent studies have revealed that microRNAs (miRs) play important roles in the regulation of angiogenesis. In this study, we have characterized miR-382 upregulation by hypoxia and the functional relevance of miR-382 in tumor angiogenesis. miRs induced by hypoxia in MKN1 human gastric cancer cells were investigated using miRNA microarrays. We selected miR-382 and found that the expression of miR-382 was regulated by HIF-1α. Conditioned media (CM) from MKN1 cells transfected with a miR-382 inhibitor (antagomiR-382) under hypoxic conditions significantly decreased vascular endothelial cell (EC) proliferation, migration and tube formation. Algorithmic programs (Target Scan, miRanda and cbio) predicted that phosphatase and tensin homolog (PTEN) is a target gene of miR-382. Deletion of miR382-binding sequences in the PTEN mRNA 3'-untranslated region (UTR) diminished the luciferase reporter activity. Subsequent study showed that the overexpression of miR-382 or antagomiR-382 down- or upregulated PTEN and its downstream target AKT/mTOR signaling pathway, indicating that PTEN is a functional target gene of miR-382. In addition, PTEN inhibited miR-382-induced in vitro and in vivo angiogenesis as well as VEGF secretion, and the inhibition of miR-382 expression reduced xenograft tumor growth and microvessel density in tumors. Taken together, these results suggest that miR-382 induced by hypoxia promotes angiogenesis and acts as an angiogenic oncogene by repressing PTEN.
منابع مشابه
MicroRNA-200c Promotes Suppressive Potential of Myeloid-Derived Suppressor Cells by Modulating PTEN and FOG2 Expression
Myeloid-derived suppressor cells (MDSCs) constitute one of the major populations that potently suppress anti-tumor immune responses and favor tumor growth in tumor microenvironment. However, the mechanism(s) regulating the differentiation and suppressive function of tumor-associated MDSCs remain(s) unclear. Here, we identified a microRNA-200c (miR-200c), whose expression was dramatically induce...
متن کاملmicroRNA-29a functions as a tumor suppressor in nasopharyngeal carcinoma 5-8F cells through targeting VEGF
Objective(s): microRNA-29 (miR-29) family miRNAs have been mentioned as tumor suppressive genes in several human cancers. The purpose of this study was to investigate the function of miR-29a in nasopharyngeal carcinoma (NPC) cells. Materials and Methods: Human NPC cell line 5-8F was transfected with mimic, inhibitor or scrambled controls...
متن کاملMicroRNA-494 is required for the accumulation and functions of tumor-expanded myeloid-derived suppressor cells via targeting of PTEN.
Myeloid-derived suppressor cells (MDSCs) potently suppress the anti-tumor immune responses and also orchestrate the tumor microenvironment that favors tumor angiogenesis and metastasis. The molecular networks regulating the accumulation and functions of tumor-expanded MDSCs are largely unknown. In this study, we identified microRNA-494 (miR-494), whose expression was dramatically induced by tum...
متن کاملInhibiting miR-155 protects against myocardial ischemia/reperfusion injury via targeted regulation of HIF-1α in rats
Objective(s): The aim of this study was to identify the role of miR-155 in the myocardial ischemia/reperfusion (I/R) injury through targeting hypoxia-inducible factor 1-alpha (HIF-1α). Materials and Methods: We constructed rat models with myocardial I/R injury and H9C2 cell models with hypoxia/reoxygenation (H/R) damage. Anti-miR-155 and...
متن کاملMicroRNA-155 and MicroRNA-21 promote the expansion of functional myeloid-derived suppressor cells.
Myeloid-derived suppressor cells (MDSC) are one of the main cell populations that negatively regulate immune responses. However, the mechanism underlying the expansion of MDSC remains unclear. Using miRNA microarray and TaqMan probe-based quantitative RT-PCR assay, we identified microRNA (miR)-155 and miR-21 as the two most upregulated miRNAs during the induction of MDSC from the bone marrow ce...
متن کامل